
Object-Oriented Programming

 1 - 1

SOFTWARE and
SOFTWARE ENGINEERING

●● The Nature of Software

●● History of Software Development

●● Software Engineering Paradigms and Technology

●● Software Complexity, Object-Oriented Requirements

Analysis (OORA), and Object-Oriented Design (OOD)

Objectives of Module 1

● Present and discuss the idea that software is much more than just code --

engineered software is composed of controlled configuration items which

include documents, data, and code

● Present and discuss the history of software development, including its

evolution into a business

● Present and discuss several different software engineering paradigms,

showing different methods for developing engineered software:

❍ Classic "waterfall" method

❍ Rapid prototyping

❍ Spiral method

● Introduce the concepts of complexity, Object-Oriented Requirements Analysis

(OORA), and Object-Oriented Design (OOD)

Object-Oriented Programming

 1 - 2

THE NATURE OF SOFTWARE

✓✓ Characteristics of Software

✓✓ Failure Curves for Hardware

and Software

✓✓ Software Components

✓✓ Software Configuration

●● The Nature of Software

● History of Software Development

● Software Engineering Paradigms and Technology

● Software Complexity, Object-Oriented Requirements

Analysis (OORA), and Object-Oriented Design (OOD)

Object-Oriented Programming

 1 - 3

THE NATURE OF SOFTWARE

Characteristics of Software

●● Software is programs, documents, and data.

●● Software is developed or engineered; it is not manufactured like

hardware.

●● Software does not wear out, but it does deteriorate.

●● Most software is custom-built, rather than being assembled

from existing components.

●● Software is a business opportunity.

1. Many people have the non-engineering view of software:

● as computer programs (i.e., source code and/or executables),

● as data structures (e.g., data base schemas), and

● as operation and user documentation (usually created as an

afterthought when the "real" work is done)

2. A major factor in the speed at which quality software is developed is the failure

to reuse software:

● there are few reusable component libraries,

● there is a bias against using "old" routines or routines "not invented

here", and

● software as a creative art is a perception that is held by many people.

3. Software has become a business opportunity, where the success or failure of

a business (and the jobs of the people associated with it) depends upon the

timely development of quality software. The customer is demanding both high

quality in the software (and once a business has a reputation of putting out

"junk", word gets around quickly) and timeliness of delivery (the customer

wants the software now).

Object-Oriented Programming

 1 - 4

THE NATURE OF SOFTWARE

Failure Curves for
Hardware and Software

Time Time

Failure

Rate

"Infant
Mortality"

"Wear
Out"

Ideal

Actual

Change

FAILURE CURVE
FOR HARDWARE

FAILURE CURVE
FOR SOFTWARE

Hardware tends to have a wear-in time during which it has a higher probability of

failure. This is generally referred to as infant mortality. Once the initial period is

passed, hardware tends to operate without failure until components age enough

to cause breakdown.

Software also shows an early error rate, but updates should remove the most

obvious problems which render the software unreliable. Updates for added

functionality often add more errors, as is shown by the spikes on the failure

curve for software. As updates are made, more latent errors appear in the

software to make it inherently less reliable until the software is finally considered

unreliable enough to stop using the software product or to perform a major

redesign and rewrite of the software.

Object-Oriented Programming

 1 - 5

THE NATURE OF SOFTWARE

Software Components

●● Software programs, or software systems, consist of

components.

●● A set of components which comprise a logical unit of software is

called a software configuration item.

●● Reuse and development of reliable, trusted software

components improves software quality and productivity.

●● Computer language forms:

❍❍ Machine level (microcode, digital signal generators)

❍❍ Assembly language (PC assembler, controllers)

❍❍ High-order languages (FORTRAN, Pascal, C, Ada, ...)

❍❍ Specialized languages (LISP, OPS5, Prolog, ...)

❍❍ Fourth generation languages (databases, windows apps)

Object-Oriented Programming

 1 - 6

THE NATURE OF SOFTWARE

Software Configuration

Software
Project

Plan
Software

Requirements

Specification
Software

Design

Software
Test Plan and

Procedures

Data

Structures
and

Dictionary

Code

User

Documents

Composition of Software

The software we develop is composed of these parts, also known as software configuration items:

● Software Project Plan - A document which details the tasks, schedules, needed

resources, and approach to carry out development. This is the first document produced

and it includes cost details.

● Software Requirements Specification - A document which identifies what is required of

the software (as opposed to the design document, which describes how to implement the

software). This document includes information on how implementation of the

requirements will be verified (i.e., some initial test considerations). This very important

document is often quite time consuming to produce.

● Software Test Plan and Procedures - A document which describes the test methods,

approaches, procedures, and the support required for testing the software code

components and the integrated software system. This document includes test data and

expected results and is developed during both the requirements definition and design

phases of the project.

● Data Structures and Dictionary - The Data Dictionary documents all data structures and

the definitions of terms, variables, and other items of interest regarding the details of the

data in the system. It supports software design, coding, and maintenance and is

developed during the requirements and design phases.

● Software Design Document - A document which clearly details the behavior and

structure of the system as a whole and each software code component.

● User Documents - These are user guides, reference guides, application notes, and other

items deemed necessary for the users.

● Code - The compilable source code of the system.

Object-Oriented Programming

 1 - 7

THE NATURE OF SOFTWARE

Software Configuration

●● Planning Activity

❍❍ Software Project Plan

●● Requirements Definition Activity

❍❍ Software Requirements

Specification

❍❍ Software Test Plan and

Procedures

❍❍ Data Structures and

Dictionary

❍❍ User Documents

●● Design Activity

❍❍ Software Design Documents

❍❍ Software Test Plan and

Procedures

❍❍ Data Structures and Dictionary

●● Coding and Testing Activity

❍❍ Code

❍❍ Software Test Plan and

Procedures

●● Delivery and Maintenance Activity

❍❍ User Documents

❍❍ Others as needed

When are the Software Configuration Items Produced?

● The Software Configuration Items are drafted, reviewed, revised, etc., at many

points throughout the activities performed during the development of the software.

Seldom is a Software Configuration Item felt to be completely finished.

● All Software Configuration Items are placed under configuration control, allowing for

them to be changed and all changes to them to be tracked. Any particular version of

any of the configuration items may be recreated when desired.

● The control of the Software Configuration Items extends from the planning stages of

the project through the maintenance activities -- the entire life of the software.

Object-Oriented Programming

 1 - 8

HISTORY OF
SOFTWARE DEVELOPMENT

✓✓ Role of Software

✓✓ Industrial View

● The Nature of Software

●● History of Software Development

● Software Engineering Paradigms and Technology

● Software Complexity, Object-Oriented Requirements

Analysis (OORA), and Object-Oriented Design (OOD)

Object-Oriented Programming

 1 - 9

HISTORY

Role of Software

1950 1960 1970 1980 1990

First Era

Second Era

Third Era

Fourth Era

Batch Oriented

Limited Distribution

Custom Software

Multiuser

Real-Time

Database

Product Software

Distributed Systems

Embedded Smarts

Low-Cost Hardware

Consumer Impact

Desk-Top Systems

Object Orientation

Expert Systems

Neural Nets

Parallel Computing

The explosive growth of computer speeds
and capabilities at a very low cost fuels
the demand for very complex software

and increases customer expectations.

1. Early years (to about 1970):

● large, expensive, few, protected computers

● small programs inefficiently written

● major constraints (memory, speed, I/O)

● non-realtime batch-oriented software; single user

● single programmer per program

2. Middle years (1970 to 1990):

● realtime software development

● multiple programmer teams

● software development industry emerges

● emerging interest in engineering the development of software

● department-level computers make them more accessible; multiuser

3. Later years (1980 to 1990):

● personal computer makes computing highly accessible

● very large software industry develops

● large programs and software systems emerge

● hardware is distributed using networks

● communications using computers evolves

● software becomes highly departmentalized

Object-Oriented Programming

 1 - 10

HISTORY

Industrial View ●● Why does it take so

long to finish a

working software

system?

●● Why are development

costs so high?

●● Why can't we find all

software errors before

software is delivered?

●● How can we measure

the progress of

software

development?

●● How can we survive

in the global

economy?

1. Early software development was considered to be an "art form"

2. Formal methods did not exist or were not followed

3. Programming education mainly by trial and error

4. Example of problems: Operating System for the IBM 360 (data extracted from The

Mythical Man-Month by Fredrick Brooks, Addison-Wesley, 1975)

● large software product (almost 1 million lines of code)

● as errors were fixed, more errors were produced

● adding people to the project made things worse

● few formal methods of design were known or used

● project was abandoned and the operating system was completely rewritten

● project had a major impact on producing formal methods in software

engineering

Object-Oriented Programming

 1 - 11

SOFTWARE ENGINEERING PARADIGMS

✓✓ What is Software Engineering?

✓✓ Life Cycle

✓✓ Prototyping Model

✓✓ Spiral Model

✓✓ Software Engineering

Capability

● The Nature of Software

● History of Software Development

●● Software Engineering Paradigms and Technology

● Software Complexity, Object-Oriented Requirements

Analysis (OORA), and Object-Oriented Design (OOD)

Object-Oriented Programming

 1 - 12

SOFTWARE ENGINEERING

Methods

●● Analysis

●● Design

●● Coding

●● Testing

●● Maintenance

Procedures

●● Project Management

●● Software Quality Assurance

●● Software Configuration Management

●● Measurement

●● Tracking

●● Innovative Technology Insertion

Computer-Aided Software Engineering (CASE)

●● Tools which support the Methods and Procedures

What Is Software Engineering?

The Essence of Software Engineering

Methods

● Methods comprise the techniques used to perform the various phases of

the software development

● Methods are not necessarily documented formally and are often unique

to each organization and its culture

● Once a method is selected for a project, automated facilities may come

into play to support the method; a common flaw in many organizations is

that automated facilities are sometimes selected first and people then

spend time figuring out how to apply the facility to their methods or adapt

them methods to the facility

Procedures

● Procedures are formal, documented activities performed during the

various phases of the software development

● Personnel with less advanced training are often employed in roles which

implement the various procedures

● Implementation of the procedures is one of the best places to apply

automated techniques

CASE Tools

● Computer-Aided Software Engineering tools can be a valuable aid when

applied to support a well-established method or set of methods

● CASE tools can also introduce a high degree of risk to a project if the

organization is immature in its methods

Object-Oriented Programming

 1 - 13

SOFTWARE ENGINEERING PARADIGMS

Life CycleSystem
Engineering

Analysis

Design

Coding

Testing

Maintenance

Classic "Waterfall" Model

This model is a systematic, sequential approach to software development. It is the oldest

and most often used of all software engineering paradigms.

● System Engineering - Establish requirements for the software as a part of the larger

system. Determine which parts of the entire system are to be allocated to software.

● Analysis - Establish requirements from the point of view of the software. Include

functional, performance, and interface requirements for the software subsystem.

● Design - Define the software architecture, procedural details, data structures, and

interface characteristics for the software. The design process plans the implementation

of the software to meet the requirements. Rapid prototyping and automated analysis of

the design may come into play. The design of the software presents enough

information so that a programmer who does not necessarily know how the system works

can create code.

● Coding - The translation of a design into a compilable form. If the design is sufficiently

detailed and adequate technologies are available, coding may be automatic.

● Testing - Analysis and verification that codes statements are fully compliant with the

requirements and the customer's intent.

● Maintenance - The process of continuing to support the system after it is released to

the customer. This process often involves several types of activities:

❍ Corrective Maintenance - fixing errors

❍ Adaptive Maintenance - changing the software to run in different environments

(such as new versions of an OS or new target platforms)

❍ Enhancement - adding new features to the software

Object-Oriented Programming

 1 - 14

SOFTWARE ENGINEERING PARADIGMS

Life CycleSystem
Engineering

Analysis

Design

Coding

Testing

Maintenance

Is this model realistic?

Problems with the Classic "Waterfall" Model

● Real projects rarely follow strict sequential development.

● It is very difficult to fully state all the requirements up front. The customer

does not often know exactly what his requirements are or does not

provide all the necessary input to fully state the requirements.

● This model demands patience from the customer. Working code is not

available until very late into the project.

Object-Oriented Programming

 1 - 15

SOFTWARE ENGINEERING PARADIGMS

Prototyping Model

Requirements

Gathering and
Refinement

Quick

Design

Building the
PrototypeEvaluation

of the

Prototype

Refining the

Prototype

Engineer the

Product

Start

Stop

An Iterative Process

● Requirements Gathering and Refinement - During the first loop around this

circle, an initial statement of the requirements is obtained. During later loops,

the requirements statement is revised based on customer feedback.

● Quick Design - Very little time is usually spent on designing the prototype.

Often, aided by workstation-based tools, we transition directly into building the

prototype.

● Building the Prototype - This often involves the aid of software tools.

● Evaluation of the Prototype - The customer and the developers unite in their

efforts to look at the prototype and determine its flaws.

● Refining the Prototype - This step is taken only if the prototype is not

discarded.

● Engineer the Product - This step is taken when the customer and developer

are completely satisfied.

Object-Oriented Programming

 1 - 16

SOFTWARE ENGINEERING PARADIGMS

Spiral Model
Planning Risk Analysis

EngineeringCustomer Evaluation

Go/ No Go
Decision

Initial

Require-
ments
Gathering

and
Project

Planning

Planning

Based on
Customer
Comments

Evaluations

Risk Analysis

Based on Initial
Requirements

Risk Analysis
Based on

Customer
Reaction

Initial Prototype

Nth-Level Prototype

Engineered
System

Toward a
Completed

System

Start

Iterative Refinement

First Loop

● Start at the center of the spiral; plan the project and gather initial requirements

● Perform a risk analysis based on these initial requirements; make a go/no go

decision; continue if go

● Create an initial prototype of the system

● Customer (and developer) evaluate the prototype

Second Loop

● Feedback from the evaluation is used to refine the requirements and more

project planning is done

● Perform a second risk analysis based on the revised requirements; make a

go/no go decision; continue if go

● Create a second prototype, based either on the initial prototype or built from

scratch

● Customer (and developer) evaluate the second prototype

Nth Loop

● Repeat the Second Loop as desired

After Last Go/No Go Decision

● Engineer the system

Object-Oriented Programming

 1 - 17

SOFTWARE ENGINEERING PARADIGMS

Generic Paradigm
1. DEFINITION PHASE

●● System Analysis

●● Software Project Planning

●● Requirements Analysis

2. DEVELOPMENT PHASE

●● Software Design

●● Coding

●● Software Testing

3. MAINTENANCE PHASE

●● Correction

●● Adaptation

●● Enhancement

Common Phases for All Methods

Definition Phase

● All methods involve an analysis of the system in which the software

resides, the gathering of the requirements for the software, and the

planning of the development of the software

● Plan the development and get an initial understanding of the

requirements

Development Phase

● Design, code, and test the software

Maintenance Phase

● Support the software after it is released to the customer; there are often

three kinds of maintenance to be performed:

❍ Corrective Maintenance - fix defects uncovered in the software

❍ Adaptive Maintenance - change the software to run under

different environments, such as new versions of an operating

system

❍ Enhancement - extend the capabilities of the software

Object-Oriented Programming

 1 - 18

SOFTWARE ENGINEERING

Software Engineering Capability
and Its Measurement

●● The maturity of an organization's software engineering capability

can be measured in terms of the degree to which the outcome of

the process by which software is developed can be predicted.

❍❍ Predict the amount of time required to develop a software

artifact

❍❍ Predict the resources (number of people, amount of disk

space, etc.) required to develop a software artifact

❍❍ Predict the cost of developing a software artifact

●● The process and the technology go hand in hand.

●● One method of measurement is the Capability Maturity Model for

Software developed by the Software Engineering Institute.

Capability Maturity Model for Software

This model is defined in two papers from the Software Engineering Institute:

● Paulk, Curtis, Chrissis, et al, Capability Maturity Model for Software,

August, 1991, Report Number CMU/SEI-91-TR-24 and ESD-TR-91-24,

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA

15213

● Weber, Paulk, Wise, Withey, et al, Key Practices of the Capability Maturity

Model, August, 1991, Report Number CMU/SEI-91-TR-25 and ESD-TR-91-

25, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA

15213

Object-Oriented Programming

 1 - 19

SOFTWARE ENGINEERING

Software Engineering Capability
and Its Measurement

Increasing
Process
Maturity

Initial - Ad hoc;
unpredictable

Repeatable - Costs,
Schedules managed

Defined - Process

institutionalized

Managed - Process

measured/controlled

Optimizing - Process
refined constantly

Some Aspects of Each Level

● Level 1: Initial

❍ Project outcomes are characterized by frequent cost and schedule overruns

❍ People are burnt out in the attempt to meet the schedule

● Level 2: Repeatable

❍ Controls, software quality assurance, and baseline management are in place

❍ No commitments are made without thorough review

❍ Given experience with one type of project, probability of repeating the level of

performance (cost, schedule, and quality) on another similar project is high

● Level 3: Defined

❍ Process for each project is defined in writing at the outset

❍ SQA monitors compliance with standards and is empowered to intervene

❍ Project outcomes become more predictable across a broader range of projects

● Level 4: Managed

❍ Quantitative quality and productivity goals are set for each step in the process

❍ High predictability is achieved for each step of the process

● Level 5: Optimizing

❍ Data collected are used to identify weakness and bottlenecks in the process

❍ Causes of errors are analyzed, and future errors prevented

Object-Oriented Programming

 1 - 20

SOFTWARE COMPLEXITY,
OBJECT-ORIENTED REQUIREMENTS

ANALYSIS (OORA),
AND

OBJECT-ORIENTED DESIGN (OOD)

✓✓ The Inherent Complexity of Software

✓✓ The Attributes of Complex Systems

✓✓ Canonical Form of a Complex System

✓✓ On Designing Complex Systems

● The Nature of Software

● History of Software Development

● Software Engineering Paradigms and Technology

●● Software Complexity, Object-Oriented Requirements

Analysis (OORA), and Object-Oriented Design (OOD)

Object-Oriented Programming

 1 - 21

SOFTWARE COMPLEXITY

The Inherent Complexity of Software

A simple software system is:

●● completely specified or nearly so with a small set of behaviors

●● completely understandable by a single person

●● one that we can afford to throw away and replace with entirely

new software when it comes time to repair them or extend their

functionality

A complex software system (industrial-strength software) is:

●● one which exhibits a rich set of behaviors

●● extremely difficult, if not impossible, for an individual to

comprehend all of its aspects - exceeds the average human

intellectual capacity

●● one that we can NOT afford to throw away and replace with

entirely new software, so we patch it, maintain out-of-date

development environments for it, and carefully control changes

to it and its operational environment

Some software systems are small, useful, and easily addressed by an individual. They are not

of concern to us in this class since they are easily developed using ad-hoc or

conventional, non-object-oriented software engineering approaches. Object-oriented

technology developed out of a need to be able to handle complex software systems.

People of the genius class will always be around, demonstrating extraordinary skills in

developing larger software systems. These are the people we want to employ as the

system architects of our complex software systems. However, the world is only sparsely

populated with geniuses. There is a touch of genius in all of us, but it cannot be relied

upon in the development of industrial-strength software. Object-oriented technology is a
more disciplined approach to mastering the complexity of industrial-strength software

without having to rely on the divine inspiration of genius.

Why is industrial-strength software so complex?

● The problem domain itself is complex. Consider the air traffic control system of the
United States or the telephone system of AT&T.

● Managing the development process itself is a complex problem. A few decades
ago, our software consisted largely of assembly language programs that were only

a few thousand lines of code long. Today, delivered software systems range in size

from a few hundred thousand lines of code to millions or tens of millions of lines of

code developed by teams of 50, 100, 1000, or more people.

● Software affords almost too much flexibility. This flexibility is seductive, but it has a

drawback in that there is a lack of standards which support extensive reuse without

resorting to hand-crafting the software.

● Software systems are discrete rather than continuous. The larger the system, the

more of an explosion of states we have (often exponential).

Object-Oriented Programming

 1 - 22

SOFTWARE COMPLEXITY

The Attributes of Complex Systems

1. A complex system is implemented in a hierarchical structure.

2. The determination of this hierarchy, selecting upper-level
subsystems, lower-level subsystems, and primitive components, is
relatively arbitrary, largely up to the discretion of the designer of the

system.

3. Linkages within the components of a system are usually stronger
than linkages between the components of a system.

4. Complex systems are often composed of only a few different

classes of subsystems, although there may be many instances of
each class.

5. Working complex systems have invariably evolved from working

simpler systems. A complex system designed from scratch has
never worked and cannot be patched to make it work.

Two kinds of complex systems are:

decomposable - one which may be divided into identifiable, independent parts

nearly decomposable - one which may be divided into identifiable parts, but the parts are

not completely independent

Object-Oriented Programming

 1 - 23

SOFTWARE COMPLEXITY

Canonical Form of a Complex System

Classes

Objects

Class Structure = "kind of" hierarchy
Object Structure = "part of" hierarchy

Most complex systems do not embody a single hierarchy. Complex systems are usually

composed of a network of related hierarchies. Two broad types of hierarchies exist:

● A "part of" hierarchy, also known as the object structure. For example, an aircraft

is composed of a propulsion system, a flight-control system, and so on. These

systems are the major parts of the aircraft.

● A "kind of" hierarchy, also known as the class structure. For example, a turbofan

engine is a kind of jet engine for the aircraft, and a high-bypass turbofan engine is

a kind of turbofan engine. A particular high-bypass turbofan engine, ID number

20943G56, is an instance of the class of all high-bypass turbofan engines.

A successful complex software system encompasses:

● a well-engineered class structure

● a well-engineered object structure

● the five attributes of a complex system

Object-Oriented Programming

 1 - 24

SOFTWARE COMPLEXITY

On Designing Complex Systems
Requirements Analysis - the disciplined approach used to understand a

problem

Design - the disciplined approach used to devise a solution to a problem

The Purpose of Design

To construct a system that:

●● satisfies a given specification

●● conforms to limitations of the target

●● meets constraints on performance

and resource usage

●● satisfies a given set of design
criteria on the artifact

●● satisfies restrictions on the design

process itself, such as cost and

schedule

Elements of Design

Notation - the language of
expression

Process - the steps taken
for the orderly
construction of the

design

Tools - the artifacts that
support the design

process by reducing
the level of effort

